Amorphous Scalia And The New USA

The death of Justice Antonin Scalia in 2016 reminded me of his vote in 1986 for the Louisiana law that forbade public schools to teach evolution without also instructing students also on “creative science.” Then the Chief Justice William Rehnquist joined Scalia, who was heavily criticized by the academicians, as Jay Gould of Harvard said, “I regret to say that Justice Scalia does not understand the subject matter of evolutionary biology.” Scalia was open about the reasons for his decision. He said, “what we can really know for sure?”, criticizing his colleagues’ decision for treating the evidence for evolution as “conclusive.” To Scalia, ‘creative science’ was indeed a science as well. It was a constitutional issue of church and state to other justices, but to Scalia, it was a matter of belief, not necessarily in creation but the proof against creation science. In the 17th century, Galileo was ordered to turn himself into the Holy Office to begin trial for holding the belief that the Earth revolves around the Sun, which was deemed heretical by the Catholic Church. In 1616, exactly 300 years ago, the Inquisition found heliocentrism to be formally heretical, and heliocentric books were banned, and Galileo was ordered to refrain from holding, teaching or defending heliocentric ideas. More than 350 years after the Roman Catholic Church condemned Galileo, Pope John Paul II rectified this Church's most infamous wrongs. Three centuries from today, we will look back and find a member of the Supreme Court just as primitive as was the Church six hundred years ago. But with a caveat.

The judiciary faces judging cases based on merit and beyond a reasonable doubt. This task becomes onerous when the judgment involves amorphous considerations. There is no sharp line in judging when a decision resides on values, morality, and more particularly on the complexity of the issue that is beyond the capability the of a judge to understand. Scalia admitted, he does not get the science and has moral issues with his beliefs regarding Creation. What folks three hundred years from now will find is that there was a drastic change in the US values as the judges rendered a plurality of decisions that on amorphous grounds that changed our society for all time to come. It was too late.

 

 

On Being an Inventor

With around 100 inventions, I can talk about the experience of being an inventor. The simile of light bulb for an idea is not far fetched. Owning patents in a variety of fields, some farthest away from my professional field, is the fun part of inventing. An invention is:

  1. A "process" is defined as a process, act, or method, of doing or making something, and primarily includes industrial or technical processes.
  2. A "machine" would be anything that would commonly be considered such, from a clockwork to a tractor to a computer.
  3. The term "manufacture" refers to articles which are made and includes all manufactured articles.
  4. A "composition of matter" is a chemical composition, and may include mixtures of ingredients as well as new chemical compounds.

There are three tests to know if a flash of an idea (what lawyers call the subject matter) can become an invention: 

  • Is it patentable? Some inventions like the laws of nature, physical phenomena, and abstract ideas are not patentable subject matter. It includes a discovery, scientific theory or mathematical method, an aesthetic creation, a scheme, rule or method for performing a mental act, playing a game or doing business, or a computer program, a presentation of information, a procedure for surgical or therapeutic treatment, or diagnosis, to be practiced on humans or animals. A new mineral discovered in the earth or a new plant found in the wild is not patentable subject matter. Likewise, Einstein could not patent his celebrated E=mc2; nor could Newton have patented the law of gravity. Such discoveries are manifestations of nature, free to all people and reserved exclusively to none. The Atomic Energy Act of 1954 excludes the patenting of inventions useful solely in the utilization of special nuclear material or atomic energy for atomic weapons. In the case of mixtures of ingredients, such as medicines, a patent is not granted unless the mixture is more than the effect of its components. It is of interest to note that so-called “patent medicines” are not patented; the phrase “patent medicine” in this connection does not mean that the medicine has a patent.
  • Is it novel? Has anyone mentioned the invention anywhere? Novelty means other patents, anything on the Internet and a thesis hiding in a dusty library thousands of miles away. I get amazed when I check out a new idea on the Internet and find that I am the last one to think of it. It is humbling. Crafting a question on the Internet requires a little bit of practice but not very difficult to practice. 90% of ideas fall on this requirement. 
  • Is it non-obvious? Would someone hold an ordinary qualification in the field of the invention has thought of it? Obviousness is the hardest hurdle to overcome. In today’s advanced science, one with ordinary qualification has a Ph.D. and years of experience, so how would you know if he or she is not capable of thinking what you are thinking. Most patents are denied on this ground once they are determined to be novel. The obviousness determination goes farther to inherence, which means that even though the specific applications of an idea may not have been spelled out but if the function is present in something already reported, you have no invention. 
  • Is it useful? “Useful” refers to the condition that the subject matter has a useful purpose and that also includes functionality, i.e., a machine which does not operate to perform the intended purpose would not be called useful, and therefore would not be granted patent protection. One can find a use for just about anything under the sun, so this remains the least of the hurdles.

Once put to above tests, it becomes evident why an invention is a fleeting dream. Being an inventor does not mean that you are a genius or that you understand the science better—it only tells that you were the first ones to put the nuts and bolts together for a useful idea (subject matter). Socratic method, also known as a method of elenchus, elenctic method, or Socratic debate, is named after the classical Greek philosopher Socrates. It is a form of inquiry and discussion between individuals, based on asking and answering questions to stimulate critical thinking and to illuminate ideas. When you are in the inventing mode, the conversation takes place with yourself. You keep asking questions until you hit a wall. It is this point when you come up with an alternative proposition.

Let me share with you a few examples of my personal experience. Bioreactors or fermenters are used to brew beer, making recombinant drugs and grow organs. We are using them for thousands of years, but the first US patent for a bioreactor was issued on 1 April 1842 to C. C. Edday (US Patent 2,535), titled Fermenting Vat. Today, 170 years later, we still use an upright vat, a stirring propeller, a sugar solution, a biological entity to produce all products, from wine, beer, drugs to organs. At a commercial level, these vats are tall, sometimes two and three stories tall, but in most cases, require a tall ceiling to operate. When I started my company to manufacture recombinant drugs using bacteria and mammalian cells, I ran into a wall when I found that the manufacturing facility that was made available to me, thanks to a kind investor, had an 8-ft ceiling height. The choice was constraining enough to prevent big investors to help me out. After a few weeks of pondering, I came up with an idea of laying the vat horizontally, instead of vertically. There is no limitation on the size of the bioreactor because of its height when it lays horizontally. Combining this idea with a single-use bioreactor, a replacement of stirring mechanism and many other variations that were not possible in an upright vat, I could secure dozens of patents. It turned out that the new configuration of a bioreactor was also much cheaper to construct and operate, making this technology accessible to more users, opening the possibility of faster drug development and making them more affordable. A list of my patents is available by clicking here. What I learned from this experience is that we need to look for alternates when there is already a well-established technology, and it is the simplicity that makes things more useful

My other patents in the field of new drug applications, devices and methods, all came from the same approach of visualizing a simpler path to the utility of a process, machine, manufacture of a composition. 

It has been fun because I became used to being humbled.

On the Death of Moore’s Law

Moore's law refers to an observation made by Intel co-founder Gordon Moore in 1965. He noticed that the number of transistors per square inch on integrated circuits had doubled every year since their invention. The prediction repeated so well for so many years that we began calling it a law, an immutable set of observations. We have now reached a limit to compression and transistor is replaced with nanotubes or biomolecules if we are to compress more circuits in a small space. The death of Moore’s Law teaches us the wisdom of creating a new modeling base, which I am calling Discontinuous Exponential Evolution Model or DEEM. 

Technology evolution has a way to be discontinuous as technology growth can affect its growth. The rate constant in an exponential equation, taken to be a constant in Moore’s law, itself is subject to change causing a discontinuous change, both as a spike or as a nadir. In the 1960s, as President Kennedy declared war on space to take us to the moon before the decade was over lead to billions of dollars invested in technology, the benefits of which are evident in just about every technology around us. The discovery of DNA fifty years ago altered the course of biotechnology. These were spike events, and the outcome growth of technology could not have been predicted based on the trend of growth in the past, a standard measure to develop models. Some name this change as double exponential growth, but that assumes that the variation in the rate constant is cumulative. The fact is that that rate constant can be additive or deductive creating a discontinuous evolution. The feedback circuit to the speed of change is not model-able because it cannot predict the course of technology growth in areas unpredicted. For example, new tools created by technology can create new technology that can produce better tools, significantly affecting the growth cycle.

The DEEM is better appreciated as we examine our evolution, coming out of East Africa about 100,000 years ago, as one of the many species of Homo genus. A sudden growth of our cerebral cortex allowed us to surpass other Homo species that had languished for over 2 million years. The superiority of this new Homo species, which we audaciously called sapiens, is is an example of spiking in the DEEM. While we can claim to know the arrival of spikes or nadirs, this claim negates that predictability model of certainty—we cannot.

Figure 1 shows a comparison of three situations. The bottom line is a normal exponential growth, in this case, 10% per year, the middle line is a double exponential model where the rate itself is changing by 10%, so it is 10.1%, and in the second year it will be 10.1%, and so on. The top curve is the DEEM curve where the rate is increasing by 10% per year (double exponential model) except for an additional bump every five years by an additional 10%. The DEEM model is a more realistic view of the change coming in technology. It explains that we may reach a stage where a continuous growth can skyrocket as we see these bumps.

If Moore’s Law is dead, we know that a spike is coming. However, we have learned is that we should not be too quick in declaring an observation a law, perhaps a hypothesis.

Figure 1. Multiples as a function of the time unit. Comparison of exponential, double exponential and double exponential plus periodic spikes.